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Abstract: Obesity induces an imbalance in the expression and secretion of several cyto-

kines, which contributes to the development of metabolic and cardiovascular disorders. 

On the contrary, skeletal muscle is known to have a role in reversing the detrimental im-

pact of obesity. It has been established that adipose tissue acts as an endocrine organ that 

secretes proinflammatory and anti-inflammatory adipokines. Similarly, skeletal muscle 

produces secretory molecules, called myokines, from contracting muscle fibers. Myokines 

were recently recognized as beneficial modulators of obesity, metabolic syndrome, and 

type 2 diabetes. Furthermore, adipokines and myokines play a crucial role in the commu-

nication between adipose tissue, skeletal muscle and other organs. It could be beneficial 

to find novel adipokines and myokines, and to explore their signaling pathways to identify 

targets for the treatment and prevention of cardiometabolic disorders. In this review, we 

summarize recent studies on cross-talk between skeletal muscle and adipose tissue. In 

particular, we concentrate on the major action mechanisms of adipokines and myokines, 

such as adiponectin, adipocyte fatty acid binding protein, C1q/TNF-related proteins, inter-

leukin-6, irisin, and fibroblast growth factor 21.  

Keywords: Adipokines, myokines, adiponectin, interleukin-6, irisin, metabolic disease, cardiovascular disease. 

1. INTRODUCTION 

Cardiometabolic diseases are the main cause of 

death in the world and have become a global problem 

[1]. Over the next 2 decades, mortality of ischemic 

heart disease is predicted to increase by 137% for men 

and 120% for women in developing countries [1]. With 

the rising global burden of cardiometabolic disease, it 

is necessary to identify risk components and to regulate 

them.  

With aging, body composition changes resulting in 

increased visceral fat and reduced muscle mass. Sarco-

penia, age-associated loss of muscle mass and strength, 

seriously affects the health and life quality of elderly 

people. We previously reported that sarcopenia is asso-

ciated with increased risk of type 2 diabetes and  
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non-alcoholic fatty liver disease (NAFLD) [2, 3]. 

Moreover, albuminuria is independently associated with 

sarcopenia in patients with type 2 diabetes [4]. In an ag-

ing population, the prevalence and crucial consequences 

of visceral obesity and sarcopenia have rapidly increased 

and become a significant threat to public health. Both 

visceral obesity and sarcopenia are important risk factors 

for cardiometabolic diseases, including hypertension, 

dyslipidemia, type 2 diabetes, coronary heart disease, 

and stroke [5]. They influence each other, which may 

lead to a vicious cycle [5]. Recently, the novel concept 

of sarcopenic obesity has emerged, indicating a combi-

nation of sarcopenia and obesity [6]. The reduction in 

physical activity due to sarcopenia induces decreased 

energy expenditure and increases the possibility of obe-

sity [7]. As visceral obesity increases, catabolic inflam-

matory responses are upregulated and contribute to re-

duced muscle mass [8]. In fact, we observed that base-

line visceral obesity was related to decreasing skeletal 

muscle mass in a prospective study [9]. Moreover, vis-

ceral obesity and sarcopenia share several common 

1875-533X/18 $58.00+.00 © 2018 Bentham Science Publishers 



2402    Current Medicinal Chemistry, 2018, Vol. 25, No. 20 Chung and Choi 

pathophysiological mechanisms, such as decreased 

physical activity and increased insulin resistance, in-

flammation and oxidative stress. Adipose tissue, skeletal 

muscle and liver communicate with each other and dis-

tant target organs through organokines, such as adipoki-

nes, myokines and hepatokines, by autocrine, paracrine, 

and endocrine activities [10].  

In this review, we focus on adipokines, including 

adiponectin, adipocyte fatty acid binding protein (A-

FABP), and C1q/TNF-related proteins (CTRPs), and 

myokines, including interleukin-6 (IL-6), irisin, and 

fibroblast growth factor 21 (FGF21), as metabolic and 

cardiovascular regulators. 

2. ADIPOKINES 

Adipose tissue was recently recognized as an asser-

tive endocrine organ that produces and secretes various 

adipokines. Adipose tissue has roles in the accumula-

tion of lipids, regulation of inflammation, fat metabo-

lism, insulin sensitivity and energy homeostasis [11]. 

Adipokines were divided into two groups according to 

their functions. Some adipokines, known as anti-

inflammatory adipokines, possess anti-inflammatory 

activity and decrease the severity of obesity-linked dis-

orders; these are downregulated by obesity [11]. How-

ever, many other adipokines, called proinflammatory 

adipokines, are upregulated by obesity and cause in-

flammatory activity and obesity-related complications 

[11, 12]. This inflammatory activity induces insulin 

resistance in skeletal muscle, liver and adipose tissue, 

regarded as an early defect of type 2 diabetes [13]. 

Here, we highlight anti-inflammatory adipokines (e.g. 
adiponectin and CTRPs) and proinflammatory adipoki-

nes (e.g. A-FABP) that have effects on metabolic dys-

function, atherosclerosis and cardiovascular disease 

(CVD) (Table 1). 

2.1. Adiponectin  

Adiponectin, the most abundant adipokine in human 

plasma, is secreted mainly from adipose tissue, al-

though small amounts are also produced by other tis-

sues [14]. Adiponectin is a protein of 244 amino acids 

containing a C1q-like globular domain at the C-

terminus and a collagen-like domain at the N-terminus 

[14]. Full-length adiponectin is present at high concen-

trations in healthy humans, mainly as 3 molecular 

weight isoforms: trimer, hexamer, and a high molecular 

weight (HMW) complex containing at least 18 mono-

mers [15]. In addition, globular adiponectin, the globu-

lar domain produced by proteolysis from full-length 

adiponectin, also exists in small amounts and has bio-

logical activity [16]. In particular, HMW complexes 

comprise about 50% of total adiponectin and act mostly 

on metabolic tissues [17]. Adiponectin acts via adi-

ponectin receptors that exist as two isoforms, AdipoR1 

and AdipoR2. AdipoR1, the receptor for globular adi-

ponectin, is predominantly expressed in skeletal mus-

cle; AdipoR2, the receptor for full-length adiponectin is 

predominantly expressed in the liver [18]. Recently, 

Tanabe et al. reported the crystal structures of human 

AdipoR1 and AdipoR2, which represent a novel class 

of receptor structure [19]. Adiponectin, mediated via 

AdipoR1 and AdipoR2, regulates fatty acid oxidation, 

insulin sensitivity, cytoprotection, and vasodilatation 

through IRS1/2, AMP-activated protein kinase 

(AMPK), and p38 mitogen-activated protein kinase 

(MAPK) pathways [20, 21]. Adiponectin acts directly 

in vascular endothelium, skeletal muscle, liver, and 

adipose tissue itself [20]. Iwabu et al. reported that 

PGC-1α and mitochondria are regulated by adiponectin 

and AdipoR1 through Ca
2+

 and AMPK/SIRT1 pathway 

[22]. In the cells lacking both adiponectin receptor iso-

forms, impaired ceramidase activity and elevated ce-

ramide levels were observed [23]. 

Circulating adiponectin levels are inversely related 

to risk factors of cardiometabolic disease, such as lip-

ids, blood pressure, body weight, insulin resistance, 

and atherosclerosis. Ouchi et al. reported significant 

lower adiponectin levels in patients with coronary ar-

tery disease (CAD) and found a role of adiponectin as a 

novel modulator for endothelial adhesion molecules 

[24]. In the Japanese population, genetic variation in 

the gene encoding adiponectin resulted in increased 

risk of type 2 diabetes [25]. In human studies, it has 

been shown that circulating adiponectin levels are 

downregulated in obesity, type 2 diabetes and CVD 

[26]. We previously reported that lower baseline con-

centrations of adiponectin are significantly correlated 

with increased risk of type 2 diabetes and metabolic 

syndrome over a period of 3 years, after adjusting for 

various confounding factors [27]. In a meta-analysis 

including 13 prospective studies with a total of 14,598 

participants and 2,623 incident cases of type 2 diabetes, 

lower adiponectin concentrations are consistently asso-

ciated with an increased risk of type 2 diabetes [28]. 

Furthermore, we found that circulating adiponectin 

levels had a significantly negative association with 

vascular inflammation, as represented by the mean tar-

get to background ratio (TBR) values measured using 

fluorodeoxyglucose positron emission tomography-

computed tomography (FDG-PET/CT) [29]. After ad-

justment for baseline inflammation and glycemic 

status, increased baseline adiponectin levels were 
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Table 1.  Summary of important studies about several adipokines. 

Experimental Reference Clinical Reference 

Adiponectin 

Cloning of adiponectin as a 

adipocyte specific factor 

Scherer et al. J Biol Chem 

1995;270:26746-9 [14] 

Endothelial adhesion mole-

cules/CAD 

Ouchi et al. Circulation 

1999;100:2473-2476 [24] 

Improvement of insulin resis-

tance associated with both 

lipoatrophy and obesity 

Yamauchi et al. Nat Med 

2001;7:941-6 [43] 
Genetic variation – type 2 diabetes 

Hara et al. Diabetes 

2002;51:536-40 [25] 

Cloning of receptors 
Yamauchi et al. Nature 

2003;423;762-9 [18] 
Myocardial infarction 

Pischon et al. JAMA 

2004;291:1730-7 [30] 

Regulation of PGC-1α by 

Ca(2+) and AMPK/SIRT1 

Iwabu et al. Nature 

2010;464:1313-1319 [22] 

Type 2 diabetes 

(meta-analysis) 

Li et al. JAMA 

2009;302:179-188 [28] 

A small-molecule AdipoR ago-

nist 

Okada-Iwabu et al. Nautre 

2013;503:493-499 [36] 
  

Ceramidase activity 
Holland et al. Nat Med 

2011;17:55-63 [23] 
  

Crystal structures of adi-

ponectin receptors 

Tanabe et al. Nature 

2015;420:312-6 [19] 
  

A-fatty acid binding protein (A-FABP) 

Atherosclerosis 
Makowski et al. Nat Med 

2001;7:699-705 [53] 
Obesity, metabolic syndrome 

Xu et al. Clin Chem 

2006;52:405-13 [56] 

Glucose and lipid metabolism 
Uysal et al. Endocrinology 

2000;141:3388-96 [52] 
Type 2 diabetes 

Tso et al. Diabetes Care 

2007;30:2667-72 [58] 

Atherosclerosis and survival 
Boord et al. Circulation 

2004;100:1492-8 [54] 

Vulnerable atherosclerotic 

plaque/cardiovascular events 

Peeters et al. Eur Heart J 

2011;32:1758-68 [59] 

Hepatic glucose production 
Cao et al. Cell Metab 

2013;17:768-78 [55] 
  

C1q/tumor necrosis factor-related proteins (CTRPs) 

Vascular relaxation through 

AdipoR1/AMPK/eNOS/NO 

signaling pathway (CTRPs) 

Zheng et al. Arterioscler 

Thromb Vasc Biol 

2011;31:2616-23 [69] 

Type 2 diabetes, metabolic syn-

drome (CTRP3) 

Choi KM et al. Diabetes 

2012;61:2932-6 [79] 

Proangiogenic and cardiopro-

tective adipokine (CTRP3) 

Yi et al. Circulation 

2012;125:3159-69 [78] 
Coronary artery disease (CTRP1) 

Lu et al. Eur Heart J 

2016;37:1762-71 [77] 

Attenuation of adverse cardiac 

remodeling after AMI (CTRP9) 

Sun et al. Circulation 

2013;128:S113-20 [71] 
  

Protection against diabetic car-

diomyopathy in rats (CTRP3) 

Ma et al. Diabetologia 

2017;60:1126-37 [81] 
  

 

related with a lower risk of myocardial infarction in a 

prospective study [30].  

Several mouse and human studies have demon-

strated that adiponectin supplementation modulates 

anti-inflammatory, insulin-sensitizing, and antiathero-

genic effects, as well as weight reduction [31-35]. After 

injection of recombinant adiponectin (Acrp30), glucose 

level decreased temporarily without increasing insulin 

level in animal model [34]. Interestingly, AdipoR ago-

nist (AdipoRon) ameliorated insulin resistance and glu-

cose tolerance in mice [36]. Furthermore, AdipoRon 

improved diabetes in db/db mice and prolonged the 

shortened lifespan of db/db mice on a high-fat diet 

[36]. Recently many studies proposed that adiponectin 

also had antineoplastic effect through directly affecting 

on cancer cell and indirectly modulating inflammatory 

pathway and tumor angiogenesis [37]. In obese mouse 

study, L-4F, apolipoprotein mimetic peptide, showed to 

elevate HMW adiponectin level and to improve insulin 

sensitivity [38], cardiomyopathy and coronary dysfunc-
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tion [39], and multiple myeloma [40]. Additionally, 

circulating adiponectin levels are elevated with vigor-

ous exercise [41, 42], peroxisome proliferator-activated 

receptor γ (PPARγ) agonists [43, 44], and L-cysteine 

[45] in human and/or animal studies. In the future, adi-

ponectin-targeting treatment could provide a potential 

revolutionary therapeutic strategy for the treatment of 

obesity, atherosclerosis, type 2 diabetes, cancer and 

CVD.  

2.2. Adipocyte Fatty Acid Binding Protein (A-

FABP) 

A-FABP (FABP4), belonging to a family of 14–15-

kDa proteins, is expressed abundantly in activated 

macrophages and mature adipocytes [46]. A-FABP 

plays a direct role in intracellular fatty acid transport 

and promotes inflammatory processes and metabolic 

responses [47]. A-FABP modulates signal transduction 

and gene transcription indirectly by regulating of free 

fatty acid [48, 49]. It has been discovered that A-FABP 

works with specific PPARs in regulating the transcrip-

tional activities of their common ligands, consequently 

supporting the biological functions of PPARs [50]. 

A-FABP affects lipid metabolism, lipolysis, insulin 

sensitivity, inflammation, atherosclerosis, and also 

functions as a major inducer of vulnerable plaque for-

mation [51]. An absence of A-FABP preserved β–cell 

function and improve dyslipidemia and peripheral insu-

lin resistance in obese mice [52]. Makowski et al. 
demonstrated that mice deficient apolipoprotein E 

(ApoE) are protected against atherosclerosis by lack of 

A-FABP [53]. Furthermore, A-FABP deficiency makes 

lipid metabolism, glucose, and survival better, as well 

as reduces atherosclerosis in ApoE-/- mice [54]. Cao et 
al. demonstrated A-FABP as an adipokine regulating 

hepatic glucose production [55]. 

Many clinical studies have proposed that A-FABP 

is highly connected with insulin resistance and per-

forms a role as a crucial mediator of the development 

of metabolic syndrome, type 2 diabetes, and CVD. Se-

rum A-FABP levels were highly associated with 

components of metabolic syndrome and obesity in a 

cross-sectional study [56]. In a longitudinal study, we 

found that A-FABP levels predict the development of 

adiposity, insulin resistance, and metabolic syndrome 

in Korean children [57]. Tso et al. reported that 

circulating A-FABP levels were related to dysglycemia 

and predicted new-onset type 2 diabetes independent of 

obesity and insulin resistance in a 10-year prospective 

study [58]. Moreover, Peeters et al. showed that A-

FABP in carotid atherosclerotic lesions are related to 

increased cardiovascular risk and vulnerable plaque 

phenotype [59]. Circulating A-FABP levels increase 

proportionally to the number of stenotic coronary arter-

ies diagnosed by coronary angiogram [60]. Addition-

ally, we showed that serum A-FABP levels were sig-

nificantly correlated with vascular inflammation, as 

detected by maximum TBR values, in Korean men 

without CVD or diabetes [61]. Kim et al. established 

that circulating A-FABP levels negatively associated 

with appendicular skeletal muscle mass (ASM)/weight 

and positively associated with visceral fat area (VFA) 

in adult [62]. Furthermore, A-FABP significantly asso-

ciated with sarcopenic obesity, even after adjustment 

for age, BMI, and VFA in women [62]. 

In particular, A-FABP, mainly produced during adi-

pocyte differentiation, is controlled by PPARγ agonists, 

insulin, dexamethasone, and fatty acids, and regulates 

lipid and glucose metabolism [63]. Recently, many A-

FABP inhibitors, such as oxazole derivatives, indole 

derivatives, imidazole derivatives, thiophene and thia-

zole derivatives, benzimidazole derivatives, pyrimi-

dine, urea, carbamoyl derivatives, bicyclic pyridine, 

and quinoxaline derivatives, as well as pyrazole deriva-

tives (BMS309403) have been suggested as treatments 

for atherosclerosis and diabetes [64]. We need to ex-

pend efforts in clinical research to identify attractive 

therapeutic A-FABP targets for cardiometabolic dis-

eases. 

2.3. C1Q/TNF-related Proteins (CTRPs) 

Members of the CTRPs family of proteins are con-

sidered to be paralogs of adiponectin that have a colla-

gen domain and a C1q-like globular domain [65]. Simi-

lar to adiponectin, the CTRP superfamily, a cluster of 

15 members, is mainly expressed in adipose tissue and 

plays potential roles in cardiovascular and metabolic 

regulation. In particular, CTRP9 contains the most 

similar amino acids to adiponectin in its C1q-like 

globular domain [65]. Several studies have revealed 

that CTRP9 improves metabolic dysfunction and vas-

cular disorders through regulation of insulin resistance, 

inflammatory response, and vasorelaxation [66-69]. 

We showed that CTRP9 improved hepatic steatosis 

through the reduction of endoplasmic reticulum stress 

by the AMPK-mediated activation of autophagy [70]. 

Recent studies demonstrated that CTRP9 attenuates 

ischemic heart disease through anti-apoptotic and anti-

inflammatory actions via the cAMP-PKA or AMPK 

pathways [66, 71-73]. CTRP1 improves local inflam-

mation and the progression of atherosclerosis [74], and 

protects against acute ischemic heart injury [75, 76]. 

However, Lu et al. reported that CTRP1 levels are 
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higher in patients with CAD and CTRP1 promotes 

atherosclerosis in mice [77]. An explanation for this 

discrepancy is not apparent at the present time. On the 

other hand, Yi et al. found CTRP3 as a novel cardio-

protective, antiapoptotic, and proangiogenic adipokine 

in the ischemic mouse heart [78]. In our previous 

study, circulating CTRP3 concentrations were associ-

ated with components of metabolic syndrome, arterial 

stiffness, kidney function, and inflammation [79]. We 

also observed that circulating CTRP3 concentrations 

reduced in patients with stable angina pectoris or acute 

coronary syndrome [80]. Recently, Ma et al. reported 

that CTRP3 alleviates inflammation, oxidative stress, 

and cardiac dysfunction, which result in protection 

against diabetic cardiomyopathy in rats [81]. Many 

studies have proposed that CTRP3 and/or CTRP9 are 

viable therapeutic targets for the treatment of obesity, 

diabetes, hepatic steatosis, and CVD [75].  

3. MYOKINES 

Skeletal muscle makes up the largest proportion of 

tissue, constituting about 40% of the total body weight 

in adults without obesity [82]. Skeletal muscle mass 

increases through exercise, nutrients, and hormones, 

such as growth hormone, insulin like growth factor 1, 

insulin, testosterone, and progestin [83]. It is well 

known that aerobic exercise affects on reducing body 

fat mass via rising oxygen utilization, whereas resis-

tance exercise affects on reinforced muscle strength 

and increasing muscle mass. Additionally, the benefits 

of exercise are improved skeletal muscle function and 

energy balance, and amelioration of chronic diseases 

such as hypertension, hyperglycemia, and dyslipide-

mia. Exercise systemically affects other organs, includ-

ing the brain, heart, liver, and kidney in animal models 

[84, 85]. Meta-analysis study showed that physical ex-

ercise affected positively on cardiovascular health by 

reducing the risk of stroke and coronary heart disease 

[86]. Inversely, sarcopenia with/without obesity, in-

duced physical inactivity, influences to organokines 

and results in development of type 2 diabetes mellitus, 

cancer, cardiovascular diseases [87]. Nevertheless, lit-

tle is known about the mechanisms linking exercise 

training to whole-body metabolism. Several years ago, 

Pedersen et al. suggested that skeletal muscle produces 

and secretes humoral factors, called myokines, which 

actively interact with other organs [88]. The verifica-

tion of novel myokines that regulate inflammation, in-

sulin resistance, and lipid profiles could provide effec-

tive approaches for preventing or improving cardiome-

tabolic disease (Table 2). 

3.1. Interleukin-6 (IL-6) 

IL-6 has pleiotropic effects in different tissues and 

organs. IL-6 was originally regarded as a proinflamma-

tory cytokine [89], but later anti-inflammatory effects 

were also revealed [90]. IL-6 is expressed in vascular 

endothelial cells, fibroblasts, and stimulated monocytes 

or macrophages [91]. IL-6 production increases in 

muscle during exercise, in white adipose tissue upon 

diabetes and obesity, and in vascular smooth muscle 

with atherosclerotic plaques [88, 92-94]. The intracel-

lular signaling of IL-6 is connected with glycoprotein 

130 dimer binding of IL-6/IL-6 receptor, called as clas-

sic signaling, or IL-6/soluble IL-6 receptor, called as 

trans-signaling [94]. It is suggested that the trans-

signaling is related to proinflammatory action and clas-

sic signaling is related to anti-inflammatory and meta-

bolic regulation [94]. It helps explain the paradox of 

the pathophysiological properties of IL-6. 

As a myokine, IL-6 is released during skeletal mus-

cle contraction without muscle damage [95]. Acute 

contraction of skeletal muscle dramatically increases 

muscle IL-6 mRNA content and plasma IL-6 levels, 

and these responses are reduced by endurance training 

or regular exercise training [96]. Opposite IL-6, the IL-

6 receptor-α mRNA response in muscle is greater dur-

ing regular exercise training compared with before 

training, possibly compensating for the reduction in IL-

6 [97]. 

IL-6 regulates glucose homeostasis and metabolism 

in other organs, such as adipose tissue, pancreatic ß-

cells, neuroendocrine cells, and hepatocytes, as well as 

in myocytes themselves. Carey et al. reported that 

acute treatment with IL-6 in humans increased insulin-

stimulated glucose disposal, proven using a hyperinsu-

linemic-euglycemic clamp [98]. IL-6 regulates glucose 

transporter 4 (GLUT4) translocation and fatty acid oxi-

dation via AMPK in adipose tissue and muscle [98, 

99]. Moreover, IL-6 increases insulin secretion in beta-

cells by upregulating glucagon-like peptide-1 (GLP-1) 

from intestinal L cells and pancreatic alpha-cells via 

the classic signaling pathway [100]. Additionally, exer-

cise-induced IL-6 acts on glucose homeostasis in the 

liver via hepatic glycogenolysis, gluconeogenesis, and 

glucose release [101]. Exercise-triggered IL-6 attenu-

ated insulin resistance through the suppression of 

proinflammatory cytokines, including TNF-α and IL-

1β, and induction of anti-inflammatory cytokines, in-

cluding IL-10 [102, 103]. 

IL-6 -/- mice showed mature-onset obesity, sys-

temic insulin resistance, and hepatic inflammation 

[104, 105]. In patients with rheumatoid arthritis, 
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Table 2.  Summary of important studies about several myokines. 

Experimental Reference Clinical Reference 

Interleukin-6 (IL-6) 

IL-6/IL-6 receptor and 
IL-6/soluble IL-6 receptor 

Qu et al. Br J Pharmacol 
2014;171:3595-603 [94] 

Endurance training 
Fischer et al. Am J Physiol Endocri-
nol Metab 2004;287:E1189-94 [96] 

Glucose uptake by AMPK 
Carey et al. Diabetes 
2006;55:2688-97 [98] 

Exercise & IL-6 receptor 
expression 

Keller et al. J Appl Physiol 
2005;99:2075-9 [97] 

Insulin secretion by GLP-1 
secretion 

Ellingsgaard et al. Nat Med 
2011;17:1481-9 [100] 

Type 2 diabetes 
Spranger et al. Diabetes 2003;52:812-

7 [108] 

Mature-onset obesity 
Wallenius et al. Nat Med 

2002;8:75-9 [104] 
Vascular complications 

and mortality 
Lowe et al. Diabetes 2014;63:1115-23 

[109] 

Hepatic inflammation and sys-
temic insulin resistance 

Matthews et al. Diabetologia 
2010;53:2431-41 [105] 

  

Irisin 

PGC1α 
Bostrom et al. Nature 
2012;481:463-8 [113] 

Resistance exercise/ en-
durance exercise 

Tsuchiya et al. Metabolism 
2015;64:1042-50 [117] 

White adipose tissue browning 
via MAPK and ERK 

Zhang et al. Diabetes 
2014;63:514-25 [115] 

Circulating Human Irisin 
Jedrychowski et al. Cell Metab 

2015;22:734-40 [121] 

Insulin secretion by PKA de-
pendent manner and 
Beta cell survival by 

AKT/BCL2 

Natalicchio et al. Diabetes 
2017;66:2849-56 [127] 

Sarcopenia and 
carotid atherosclerosis 

Lee et al. Atherosclerosis 
2015;242:476-82 [125] 

Fibroblast Growth Factor 21 (FGF21) 

Adiponectin, hepatic sterol 
regulatory element-binding 

protein-2 

Lin e al. Circulation 
2015;131:1861-71 [141] 

Hyperinsulinemia 
Hojman et al. Diabetes 2009;58:2797-

801 [133] 

PPARgamma activity 
Dutchak et al. Cell 

2012;148:556-67 [144] 
Obesity and metabolic 

syndrome 
Zhang et al. Diabetes 2008;57:1246-

53 [147] 

AMPK-SIRT1 pathway 
Zhu et al. Acta Biochim Bio-

phys Sin 2014;46:1041-8 [146] 
Impaired glucose toler-
ance and type 2 diabetes 

Chavez et al. Diabetes care 
2009;32:1542-6 [149] 

Retinoid Fenretinide 
Morrice et al. Sci Rep 
2017;7:43782 [151] 

Microvascular disease in 
patients with type 2 dia-

betes 

Ong et al. Diabetologia 
2015;58:2035-44 [155] 

 

treatment with tocilizumab, an IL-6 inhibitor, promoted 

weight gain and dyslipidemia [106, 107]. Some studies 

reported that circulating IL-6 levels were increased in 

patients with type 2 diabetes, macrovascular complica-

tions, and high-mortality [108, 109]. Recent studies 

revealed that higher IL-6 levels correlated with higher 

incidence of coronary heart disease [110, 111]. In pro-

spective study, increasing degree of internal carotid 

artery stenosis and unfavorable morphology change 

could be predicted by higher serum IL-6 levels [112]. 

Considering diverse effects of IL-6 at different stages 

or cell types, it is not clear that these positive correla-

tions of IL-6 and cardiometabolic disease are attribut-

able to which direct or indirect mechanism. In the fu-

ture, generation of more evidence is necessary to inter-

pret this paradoxical relationship. 

3.2. Irisin 

Irisin was recently identified as a PPAR-gamma co-

activator-1 alpha (PGC1α)-dependent myokine, in-

duced by cold exposure and exercise. It is produced by 

cleavage of the extracellular portion of fibronectin type 

III domain containing protein 5 (FNDC5) [113]. Full-

length FNDC5 is a transmembrane protein that in-

cludes an extracellular N-terminal portion, proven to 

have high identity between mice and humans. Irisin 

stimulates browning and uncoupling protein 1 (UCP1) 

expression in subcutaneous adipose tissue, resulting in 

increased energy expenditure and improvement of obe-

sity and glucose homeostasis [113]. In the muscle of 

PGC1α transgenic mice, the subcutaneous white adi-

pose tissue showed increased browning, UCP1 levels, 

and cell death-inducing DNA fragmentation factor-α-
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like effector A (CIDEA) mRNAs compared to that in 

controls [113]. In cultured white adipose cells, ther-

mogenic/brown fat programs increased robustly after 

FNDC5 treatment via PPARα [113]. Transgenic mice 

with increased PGC1α in muscle showed attenuated 

age-related obesity and diabetes, and ultimately pro-

longed life-span [114]. The regulation of obesity and 

type 2 diabetes suggested by irisin stimulated white 

adipose tissue browning through MAPK and extracel-

lular signal-related kinase (ERK) signaling pathway 

[115].  

Boström et al. showed that circulating irisin levels 

were significantly elevated in human subjects with su-

pervised endurance exercise training for 10 weeks 

compared to that in non-exercised subjects [113]. Fur-

thermore, Tsuchiya et al. and Huh et al. reported that 

circulating irisin levels increased more after acute re-

sistance exercise than chronic or endurance exercise 

[116, 117]. However, several studies demonstrated that 

acute or chronic exercise had no relationship with ex-

pression of FNDC5 and irisin in humans [118, 119]. 

These discrepancies among irisin results may originate 

from the different exercise regimens, different time of 

blood sampling after exercise, age, gender, and ethnic-

ity, as well as assays used for measuring irisin. Moreo-

ver, Albrecht et al. denounced the measurement of cir-

culating irisin in humans using commercial ELISA kits, 

as it is detected using unspecific cross-reacting pro-

teins, and they claimed it does not exist [120]. Never-

theless, Jedrychowski et al. refined the methodology 

using tandem mass spectrometry and confirmed that 

human irisin exists and acts as an exercise-induced 

myokine [121]. Further studies using the highly sensi-

tive mass spectroscopy are necessary to elucidate the 

inducer and actions of irisin in humans.  

Previous human studies showed a relationship be-

tween irisin level and obesity or insulin resistance. Se-

rum irisin levels were significantly decreased in sub-

jects with metabolic syndrome or impaired fasting glu-

cose [122]. In obese subjects, increased baseline irisin 

levels were related with greater improvement of gly-

cemia and hyperinsulinemia after diet-induced weight 

loss [123]. However, in our previous study, circulating 

irisin concentrations were not different in subjects with 
18

FDG-PET-detectable brown adipose tissue (BAT) or 

subjects with sarcopenia compared to controls [124]. 

Lee et al. reported that serum irisin levels are signifi-

cantly lower in patients with carotid atherosclerosis or 

sarcopenia among dialysis patients [125]. Zhang et al. 
also showed that the circulating baseline irisin levels 

are significantly reduced in patients with type 2 diabe-

tes, and especially in patients with diabetes-related 

macrovascular complications [126]. Circulating irisin 

may mediate a protective role in obesity and type 2 

diabetes with/without macrovascular complications. 

Recently, in vitro study using human and murine pan-

creatic islets and in vivo study using mouse reported 

that treatment of recombinant irisin improved beta cell 

survival through AKT/BCL2 signaling and glucose-

stimulated insulin secretion through PKA-dependent 

mechanism [127]. Although irisin might be regarded as 

potential therapeutic target, further studies are required. 

3.3. Fibroblast Growth Factor 21 (FGF21) 

FGF21 is a member of the FGF super family, with 

major functions in metabolic modulation, that is pri-

marily expressed and secreted by the liver, adipose tis-

sue, skeletal muscle, and pancreas [128-130]. FGF21 is 

expressed in response to starvation in liver [131], cold 

exposure, insulin stimulation, and mitochondrial stress 

in muscle [132-134], as well as thermogenic activation 

and noradrenergic stimulation in BAT [135]. FGF21 is 

modulated by various transcription factors, such as 

retinoic acid rector-β, PPARα, PPARγ, and carbohy-

drate responsive element-binding protein (ChREBP) 

[50, 51]. The combination of β-Klotho and FGF recep-

tor isoforms, especially FGF receptor 1 or FGF recep-

tor 2, defines the tissue-specific metabolic activities of 

FGF19 and FGF21 [136].  

In animal and cell culture studies, FGF21 regulates 

metabolic homeostasis, including glucose and lipid me-

tabolism, and energy balance. FGF21-knockout mice 

showed impaired glucose homeostasis and weight gain 

[137]. Furthermore, treatment with FGF21 improved 

triglyceride and plasma glucose levels to near normal 

in both db/db and ob/ob mice [138]. Additionally, 

FGF21 overexpression in transgenic mice did not lead 

to hypoglycemia or weight gain [138]. Through PGC-

1α, a major transcriptional modulator of energy ho-

meostasis, FGF21 regulates fatty acid and carbohydrate 

metabolism in the liver during starvation [139], and 

browning in white adipose tissue during hypothermia 

as a defense mechanism [140]. 

Moreover, FGF21 has shown possible antiathero-

sclerotic actions through lipid profile improvement, 

protection against oxidative stress, and anti-

inflammatory actions. Atherosclerotic plaque forma-

tion, dyslipidemia, and hypo-adiponectinemia was ag-

gravated in FGF21/ApoE
−/−

 double knockout mice 

compared with that in ApoE
−/−

 control mice [141]. Ad-

ditionally, atherosclerotic plaques were greatly reduced 

after recombinant FGF21 treatment compared to that 
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after recombinant adiponectin treatment, suggesting 

that the antiatherosclerotic effects of FGF21 occur in 

both adiponectin-dependent and -independent manners 

[141]. As circulating FGF21 and PPARγ stimulate each 

other in positive feedback loop [142-144], they in-

crease adiponectin expression geometrically [142]. Lin 

et al. reported that FGF21 decreases total cholesterol 

level in ApoE knockout mice via the inhibition of 

sterol regulatory element-binding protein 2 (SREBP2) 

in an adiponectin-independent manner [141]. In human 

umbilical vein endothelial cells, FGF21 reduced H2O2-

induced cell apoptosis and cytotoxic effects through the 

suppression of caspase 3 and blocking of MAPK sig-

naling cascades [145]. Treatment with FGF21 amelio-

rated high-fat-diet-induced oxidative stress in athero-

sclerotic rats [145]. Furthermore, administration of re-

combinant FGF21 attenuated alcohol-induced injury in 

HepG2 cells and mouse models through activation of 

the AMPK-sirtuin 1 pathway [146] 

Although FGF21 has beneficial effects on glucose 

and lipid metabolism, atherosclerosis, and energy bal-

ance in cell culture and animal studies, paradoxical in-

creases in circulating FGF21 levels have been observed 

in humans with cardiometabolic risks, such as obesity 

[147], dyslipidemia [148], insulin resistance [148, 149], 

and type 2 diabetes [149]. These increases may be rela-

tive to FGF21 resistance or compensatory regulation of 

metabolic stress [150]. In mice study, treatment with 

the synthetic retinoid fenretinide normalize FGF21 in-

creased by obese and insulin resistant states as well as 

improve obesity and hepatic insulin resistance [151]. 

Increases in FGF21 levels may be used as an early de-

tective biomarker for CVD in humans. In a cross-

sectional study, Shen et al. reported that elevated 

FGF21 level was an independent risk factor for coro-

nary artery disease in multiple logistic regression 

analysis [152]. In a study of 670 Chinese subjects, 

higher FGF21 levels were significantly associated with 

greater carotid intima-media thickness, independent of 

cardiometabolic risk factors [153]. Our study demon-

strated that FGF21 levels are positively correlated with 

brachial-ankle pulse wave velocity, reflecting arterial 

stiffness as an early risk indicator for CVD [154]. Re-

cently, a longitudinal study reported that elevated base-

line FGF21 levels were associated with a higher risk of 

future microvascular disease, such as nephropathy, 

neuropathy, and/or microvascular amputation, after 

adjusting for potential confounding factors in 9,697 

patients with type 2 diabetes [155]. In randomized pla-

cebo controlled studies, treatment with an analog of 

FGF21 (LY2405319 or PF-05231023) produced sig-

nificant increases in adiponectin and improvement of 

the lipid profiles in obese subjects with type 2 diabetes 

[40, 156]. 

CONCLUSION 

Adipose tissue and skeletal muscle have been re-

garded as endocrine organs that synthesize and secrete 

adipokines and myokines, respectively. Various adi-

pokines play important roles in the regulation of car-

diovascular and metabolic homeostasis by their in-

volvement in inflammation, fat distribution, atheroscle-

rosis, impaired insulin sensitivity and endothelial dys-

function. Therefore, upregulated anti-inflammatory 

adipokines, including adiponectin and CTRPs, and 

downregulated proinflammatory adipokines, including 

A-FABP, had positive effect on chronic cardiome-

tabolic disease associated with aging. Similar to the 

adipokines, myokines, such as IL-6, irisin, and FGF21, 

have also been reported to have crucial pathogenic 

roles in the improvement of obesity, insulin sensitivity, 

substrate oxidation, dyslipidemia and inflammation via 

inter-organ communication. The identification of clini-

cal significance and elucidation of molecular function 

may provide important insights for the prevention and 

treatment of metabolic and cardiovascular disorders. 

LIST OF ABBREVIATIONS 

AdipoRon = AdipoR Agonist  

A-FABP = Adipocyte Fatty Acid Binding Pro-

tein  

AMPK = AMP-activated Protein Kinase  

ASM = Appendicular Skeletal Muscle Mass  

BAT = Brown Adipose Tissue 

CAD = Coronary Artery Disease  

ChREBP = Carbohydrate Responsive Element-

Binding Protein  

CIDEA = Cell Death-inducing DNA Fragmen-

tation Factor-α-like Effector A  

CTRPs = C1q/TNF-related Proteins  

CVD = Cardiovascular Disease  

ERK = Extracellular Signal-related Kinase  

FDG-PET/CT = Fluorodeoxyglucose Positron Emis-

sion Tomography-computed Tomo-

graphy  

FGF21 = Fibroblast Growth Factor 21  

FNDC5 = Fibronectin Type III Domain Con-

taining Protein 5  
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GLP-1 = Glucagon-like Peptide-1 

GLUT4 = Glucose Transporter 4  

HMW = High Molecular Weight  

IL = Interleukin  

MAPK = p38 Mitogen-activated Protein 

Kinase  

NAFLD = Non-alcoholic Fatty Liver Disease  

PGC1α = PPAR-gamma Co-activator-1 Alpha  

PPARγ = Peroxisome Proliferator-activated 

Receptor γ  

SREBP2 = Sterol Regulatory Element-binding 

Protein 2  

TBR = Target to Background Ratio  

UCP1 = Uncoupling Protein 1 

VFA = Visceral Fat Area  
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